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SUMMARY
Neuronal oscillations in the frontal cortex have been hypothesized to play a role in the organization of high-
level cognition.Within the orbitofrontal cortex (OFC), there is a prominent oscillation in the theta frequency (4–
8 Hz) during reward-guided behavior, but it is unclear whether this oscillation has causal significance. One
methodological challenge is that it is difficult to manipulate theta without affecting other neural signals,
such as single-neuron firing rates. A potential solution is to use closed-loop control to record theta in real
time and use this signal to control the application of electrical microstimulation to the OFC. Using this
method, we show that theta oscillations in the OFC are critically important for reward-guided learning and
that they are driven by theta oscillations in the hippocampus (HPC). The ability to disrupt OFC computations
via spatially localized and temporally precise stimulation could lead to novel treatment strategies for neuro-
psychiatric disorders involving OFC dysfunction.
INTRODUCTION

The orbitofrontal cortex (OFC) is thought to be important for en-

coding rewards predicted by environmental cues (Hunt et al.,

2018; Klein-Fl€ugge et al., 2013; Rich and Wallis, 2014; Sadacca

et al., 2018; Saez et al., 2017), enabling optimal decision-making

(Padoa-Schioppa and Assad, 2006; Padoa-Schioppa and

Conen, 2017; Rich and Wallis, 2016). A prominent theta oscilla-

tion has been observed previously in theOFCwhen rodents learn

the significance of reward-predictive cues (van Wingerden et al.,

2010), but the function of this oscillation is unknown. Oscillations

may be important for organizing cognitive processes (Canolty

et al., 2006, 2010; Loonis et al., 2017; Lundqvist et al., 2018).

Such oscillations could facilitate spike timing-dependent plas-

ticity (Buzsáki et al., 2013) and ensure synchronization of

neuronal populations responsible for processing different as-

pects of task-relevant events (van Atteveldt et al., 2014). These

processes could be especially important for the process of

cognitive control, which involves co-ordination of disparate as-

sociation areas in the brain (Duncan and Owen, 2000).

Establishing a causal role of a neuronal oscillation is challenging

because standardmethods for disrupting neural function, such as

pharmacological, optogenetic, and electrical manipulations,

disrupt not just the oscillation of interest but also the underlying

neuronal firing rates. A potential solution to this problem is to

use closed-loop control (Jadhav et al., 2012; Siegle and Wilson,

2014), where the theta oscillation is recorded in real time and

used to control the application of electrical microstimulation.

Here we used closed-loop microstimulation to test the role of
OFC theta oscillations in reward-based learning. We trained two

monkeys (Macacamulatta) to performa learning task that required

them to flexibly update their decisions in the faceof changing con-

tingencies. We found a strong theta oscillation as animals learned

the value of reward-predictive cues and then examined the effect

of disruption of this oscillation via closed-loop microstimulation.

We employed a similar procedure to disrupt hippocampus (HPC)

theta oscillations, targeting this structure becauseof its prominent

theta oscillation (Buzsáki, 2002) and its anatomical connections

(Barbas and Blatt, 1995) and functional interactions (Young and

Shapiro, 2011) with the OFC.

RESULTS

Two macaques (subjects V and T) performed a task requiring

them to learn the values (probability of reward) of three novel pic-

tures and track those values as they changed over the course of a

session (Figures 1A and 1B; STAR Methods). Two pictures were

presented in 80% of the trials (free choice), and the subject

selected one of them. Subjects typically chose themore valuable

picture (Figure 1C), choosing optimally in 69% (V, 16 sessions)

and 72% (T, 9 sessions) of all trials, demonstrating that they could

track the changing reward contingencies. In the remaining 20%

of trials (forced choice), a single picture was presented, which

ensured that subjects regularly experienced the contingencies

associated with all three pictures irrespective of their choices.

To examine how neuronal activity changed with learning, we

binned trials into learning cycles so that we could compare

neuronal activity across drift periods of varying lengths
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Figure 1. Behavioral Task and Performance

(A) The behavioral task presented either one (forced

choice) or two pictures (free choice) that probabi-

listically predicted reward delivery (Prew). Subjects

indicated their choice by fixating on a picture for

425 ms.

(B) Example session (subject V) illustrating Prew

(solid lines) for each picture (P1...P3) during stable

(gray shading) and drift (white) periods and the

subject’s likelihood of choosing each picture

(dashed lines) across trials.

(C) The probability of each subject choosing the left

option as a function of the relative difference in left

and right values (subject V, 13,232 trials in 16

baseline sessions; subject T, 5,452 trials in 9 base-

line sessions). Each data point is the mean (± SEM)

of the value bin. The gray dashed line indicates

indifference between the two options. Fits were

calculated using a standard logistic fit of behavioral

choices to value difference. Both subjects were

more likely to choose the left option as its value

increased relative to the right option.

(D) Mean behavioral performance (± SEM) across

all learning cycles (V, N = 97; T, N = 35). Average

performancewas smoothed using a 16-trial moving

average. Horizontal dashed lines denote learning

criteria for each subject. Vertical gray lines denote

the onset and offset of drift.
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(Figure S1). We divided each stable-drift-stable epoch into a uni-

form 85-trial window consisting of 25 stable trials prior to drift

onset (pre-drift), 35 bins of trials during the contingency change

(drift), and 25 stable trials following drift (post-drift). We quanti-

fied the animal’s performance via a success rate, which was

the proportion of trials where they selected the more valuable

picture. This measure was required to exceed a criterion level

for at least 35 trials before values began to drift. When the reward

contingencies first began to change, the success rate began to

decrease (Figure 1D). About halfway through the drift period,

the subjects realized that the contingencies were changing and

modified their choices so that the success rate began to in-

crease, eventually returning to criterion performance levels as

the contingencies re-stabilized. Drift periods lasted a mean of

82 ± 1.8 trials for subject V and 62 ± 3.3 for subject T. We quan-

tified learning speed as the number of trials between the cessa-

tion of drift and re-establishment of criterion performance. We

used this measure because it was less affected by differences

in the length and magnitude of the drift period. Subject V reac-

quired criterion performance within 4.2 ± 0.8 trials, whereas sub-

ject T took 8.5. ± 1.4 trials. Drift periods were also characterized

by a small increase in response latencies (Wilcoxon rank-sum

test, 95% confidence interval [CI] of the median response time

during stable versus drift; V: 225–241 ms versus 250–258 ms,

z = �11, p = 5 3 10�30; T: 215–225 ms versus 233–241 ms,

z = �9, p = 2 3 10�20).

OFC Theta Oscillations and Reward-Based Learning
We recorded local field potentials (LFPs) from up to 3 multisite

electrodes distributed in the OFC (Figures S2 and S3A). During

task performance, there was a prominent increase in theta band

(4–8 Hz) power relative to other frequencies of the LFP in the
538 Neuron 106, 537–547, May 6, 2020
OFC (Figure 2A). Cross-trial phase alignment of the theta oscilla-

tion occurred at each of the major events in the task (Figure 2B).

We quantified the strength of this phase alignment by calculating

the mean resultant vector length, R (STAR Methods), which

showed that phase alignment was largely confined to the theta

frequency (Figures 2C and 2D; Figures S4A and S4B). Further-

more, there was a large increase in the prevalence of theta phase

alignment during drift (Figure 2E), particularly during the fixation

epoch (Figures S4A–S4E). This increase in phase alignment

occurred even as theta power remained constant (Figure S4F).

To test the causal significance of the theta oscillation, we used

a closed-loop system inwhichwe extracted power and phase in-

formation in real time from ongoing activity in the OFC and used

this information as a control signal to deliver electrical microsti-

mulation to the OFC at the positive phase of theta (STAR

Methods; Figures S3B and S5A). Closed-loop theta stimulation

during the fixation epoch severely impaired subjects’ ability to

flexibly update choices relative to sham stimulation (Figure 3).

We performed several control experiments (Figure 3C) to

determine whether the behavioral effect was specific to the

task epoch, frequency, or learning state. First, theta stimulation

during the choice epoch had no effect on learning. We then de-

coupled theta stimulation from the underlying theta activity by

randomly jittering stimulation by 1–300 ms from the controller

signal (theta open loop; Figures S5B and S5C) and found no ef-

fect on learning. Similarly, restricting closed-loop stimulation to

one full cycle beyond the initial cross-trial phase alignment (theta

late fixation) had no behavioral effect. Closed-loop theta stimula-

tion during the outcome epoch had no effect. Next we tested the

relevance of stimulation frequency by delivering stimulation us-

ing extracted beta (13–30 Hz) phase and power as the control

signal, which had no effect on learning. The beta oscillation is
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Figure 2. OFC LFP Oscillations and Learning

(A) Mean (± SEM) percent change in broadband OFC

LFP power during the fixation epoch relative to

intertrial interval power. Gray shading indicates the

4- to 8-Hz frequency band used for subsequent

analyses.

(B) Theta (4–8 Hz) phase from a representative ses-

sion (subject T) with trials ranked by reaction time.

Symbols denote the times of fixation onset (green

triangles), picture onset (red triangles), choice onset

(orange circles), and outcome (blue squares).

(C) Time course of cross-trial phase alignment

plotted as a function of frequency for a single session

from subject V. Phase alignment was most promi-

nent in the theta band.

(D) Cross-trial phase alignment in theta (4–8Hz), beta

(13–30 Hz), and gamma (30–60 Hz) frequencies

(subject V).

(E) Mean cross-trial theta phase alignment as a

function of learning. Data were taken from the fixa-

tion epoch and expressed as the percent increase

from baseline values measured during the pre-drift

trials. These values are derived from the data in (D)

and Figure S4B. Three standard deviations of

the bootstrapped shuffled distribution of phase

alignments are shown as color-coded lines. For

both subjects, cross-trial theta phase alignment

increased during drift.
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approximately three times faster than theta, resulting in delivery

of more current (Figure S6A). Thus, the behavioral effect of

closed-loop theta stimulation is not due to non-specific effects

of electrical stimulation.

To understand themechanism underlying the behavioral effect

of closed-loop theta stimulation, we examined the effect it had

on neuronal activity. Closed-loop theta stimulation significantly

disrupted OFC theta cross-trial phase alignment in both sub-

jects, whereas closed-loop beta stimulation had no effect

(Figure 4A; Figure S6B). During closed-loop stimulation experi-

ments, there was also a significant effect of the frequency of

stimulation on theta power (Figure 4B; 1-way ANOVA;

V: F741,2 = 80, p = 4 3 10�32; T: F399,2 = 95, p = 1 3 10�33).

Post hoc tests revealed that theta power significantly increased

with theta stimulation compared with sham or beta stimulation

(p < 0.00001 for both subjects; beta versus sham: V, p = 0.58;

T, p = 0.99). To investigate how the increased power in theta

interacted with phase alignment during learning, we calculated

phase alignment and power and determined the relationship

between the two. Figure 4C illustrates this relationship for one

example session. During sham stimulation, there was a positive

relationship between the two variables; increased theta power

was associated with stronger theta cross-trial phase alignment

(bsham = 4.7, p = 0.004). Closed-loop theta stimulation reversed

this relationship; increased theta power disrupted theta cross-

trial phase alignment (bq-stim = �11, p = 0.002). This was consis-

tent across subjects and sessions (Figure 4D); the relationship

between power and phase alignment was significantly more

negative during theta stimulation relative to sham (paired t test;

V: t223 = 9.9, p = 2 3 10�19; T: t110 = 5.8, p = 6 3 10�8).
Finally, we used data collected from the open-loop experi-

ments to determine which phases of the theta oscillation were

most affected by stimulation. For each stimulation pulse, we

identified the phase of theta at which the pulse occurred and

computed the mean change in theta power evoked by the

stimulation pulse (Figure S6C). Stimulation only increased theta

power when delivered on the rising cycle of the oscillation. We

next examined whether this had any consequences on behavior.

We quantified the likelihood of choosing optimally during open-

loop stimulation as a function of whether each pulse of stimula-

tion was delivered during the peak or the trough of the oscillation

(Figure S7). We performed a two-way ANOVA with factors of

valence (peak or trough) and pulse number (1.5). The depen-

dent variable was whether the animal chose the more valuable

option. In both subjects, pulses delivered at the positive phase

of theta were more disruptive to choice behavior than those

delivered at the negative phase.

In summary, adapting behavior to changing reward contin-

gencies was associated with phase alignment of the theta oscil-

lation. Targeting this oscillation with closed-loop microstimula-

tion significantly impaired the ability of animals to adapt their

behavior. The effects were mediated by an increase in power

to the theta oscillation, particularly during the rising phase of

the oscillation.

Single-Neuron Value Encoding in the OFC during
Learning
To determine why theta stimulation in the fixation epoch was so

disruptive to learning, we examined single-neuron responses.

We found that approximately 50% of single neurons fired spikes
Neuron 106, 537–547, May 6, 2020 539
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Figure 3. OFC Closed-Loop Theta Stimula-

tion Disrupts Value Learning

(A) The probability of each subject choosing the left

option as a function of the relative difference in left

and right values during theta fixation stimulation

sessions (subject V, 2,251 trials in 6 sessions; sub-

ject T, 1,012 trials in 3 sessions). Convention follows

Figure 1C. A colored line denotes mean ± SEM of

logistic fit from baseline behavior. Curves are flat-

tened relative to baseline behavior, indicating that

subjects’ choices are less well predicted by the

relative value of the pictures.

(B) Example session showing the effect of theta

stimulation on learning (subject V). Convention fol-

lows Figure 1B. A green-shaded region indicates

trials where theta-fixation stimulation was delivered.

(C) Number of trials required to reach criterion per-

formance during stimulation. Each point denotes

one stimulation block. Only theta stimulation during

the fixation epoch significantly impaired learning

(*p < 0.0005 in both subjects, rank-sum test,

experimental conditions versus sham stimulation,

corrected for multiple comparisons).
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that were phase locked to theta (Figure 5A; significant Rayleigh’s

Z test evaluated at p <0.01; V: 207 of 566 or 37% of neurons;

T: 180 of 275 or 65% of neurons). We next examined what infor-

mation was encoded during the fixation period. To provide

single-trial estimates of the subjective value of the pictures, we

fit a reinforcement learning (RL) model to choice behavior across

the session (STAR Methods; Figure S8). We focused our

neuronal analysis on the stable periods, when values were

well-learned and maximally divergent. For each neuron, we

determinedwhether it maintained information about the previous

trial (the identity and value of the picture and whether it was re-

warded) as well as the value of the three pictures (STAR

Methods). Many neurons encoded one or more of the values

(QLow . QHigh; V: 308 of 566 or 54% of OFC neurons; T: 103 of

275 or 37% of neurons) independent of the picture with which

the value was associated (value-centric model). Figure S9 shows

examples of such neurons. Far fewer neurons encoded informa-

tion about the previous trial (Figure 5B). We also tested an

alternate picture-centric model that examined whether neurons

encoded specific pictures and their values (Q1 . Q3). A similar

number of neurons encoded value in both the value-centric

and picture-centric models (V, 296 of 566 or 52%; T, 95 of 275

or 35%; c2 comparison between models, p > 0.1 for both

subjects). However, the value-centric model explained more

variance in neuronal firing rates than the picture-centric model

(V: value-centric mean R2 = 0.17 ± 0.01, picture-centric mean

R2 = 0.14 ± 0.01, t602 = 2.3, p = 0.01; T: value-centric mean

R2 = 0.11 ± 0.007, picture-centric mean R2 = 0.09 ± 0.01,

t196 = 1.8, p = 0.04). Consequently, we used the value-centric

model in subsequent analyses.

To determine whether value encoding was contingent on theta

oscillations, for each learning cycle and each neuron, we used
540 Neuron 106, 537–547, May 6, 2020
the value-centric regression model to

predict firing rate in a 100-ms window

(±50 ms) centered on the peak positive
phase of theta immediately following fixation onset. To account

for heterogeneity in individual neurons’ dynamics with respect

to value encoding, we repeated this procedure for the following

three theta cycles as well as the three cycles immediately pre-

ceding fixation onset and determined which cycle contained

the maximum value coding for each neuron. We then compared

these predictions with a shuffled dataset in which the time

of each theta peak in each trial was randomly jittered by ±

100 ms (approximately half a theta cycle, 10 bootstraps). We

compared the mean variance explained by the value-centric

model for the theta-aligned and jittered firing rates using a

2-way ANOVA with factors of group (theta-aligned versus jit-

tered) and learning (stable versus drift). There was significantly

more value information encoded during drift trials, and theta-

aligned firing rates contained significantly more value informa-

tion than jittered firing rates (Figure 5C).

The purpose of the recording probe in the closed-loop stimu-

lation sessions was to record the LFP, but we sometimes seren-

dipitously recorded single neurons. This enabled us to measure

the effect of closed-loop stimulation on neuronal firing. For each

neuron recorded during either theta stimulation (V, 104 neurons;

T, 36 neurons) or beta stimulation (V, 28 neurons; T, 30 neurons),

we calculated the number of spikes in a 100-ms window preced-

ing (pre-stimulation) and 100 ms following (post-stimulation)

each stimulation pulse (theta) or bout of pulses (beta). We then

compared them with a surrogate sham dataset consisting of

spikes within ± 100 ms of randomly selected time points during

the fixation epoch when stimulation was not applied. A 2-way

ANOVA with factors of group (theta, beta, or sham) and time

(pre- versus post-stimulation) revealed that, for both subjects,

there was no effect of stimulation on the firing rates of OFC neu-

rons (Figure S10; F < 2, p > 0.1 in all cases). As in our main
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Figure 4. Effect of Stimulation on LFP

(A) Mean cross-trial theta phase alignment (R) for sham

(black), theta (green), and beta (purple) stimulation ses-

sions in subject V. Significant differences were assessed

with a sliding 1-way ANOVA evaluated at p < 0.01.

A green horizontal line indicates when the cross-trial

theta phase alignment was significantly lower during

theta stimulation compared with either sham or beta

stimulation.

(B) Mean theta power during the fixation epoch as a

function of stimulation type.

(C) Single-channel example of the effect of stimulation

on the power-phase relationship. Points in gray denote

sham trials, and points in green represent stimulation

trials. Theta stimulation increased theta power and

decreased cross-trial theta phase alignment.

(D) Population data from both subjects, summarizing the

phase-power relationship for each OFC electrode. Theta

stimulation shifted the power-phase relationship from

positive to negative.
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recording experiment, the firing rate of many of the neurons was

significantly predicted by the value-centric model (V: 43 of 104

neurons during theta stimulation, 17 of 28 neurons during beta

stimulation; T: 14 of 36 neurons during theta stimulation, 17 of

30 neurons during beta stimulation). For each neuron, we deter-

mined the maximum amount of value encoding (as determined

by the percentage of variance in firing rate explained by the

value-centric model) during the drift trials, using the theta-

aligned firing rates. In both subjects, closed-loop theta stimula-

tion significantly reduced value encoding, whereas beta

stimulation either increased (V) or had no effect (T) on neuronal

value encoding (Figure 5D).

In summary, during the fixation epoch, many OFC neurons

maintained information in their firing rates about the value of

the three pictures. Firing rates and information about value

were synchronized to the underlying theta oscillation. Closed-

loop theta microstimulation disrupted the theta oscillation and

decreased the amount of information about value that was

encoded by OFC neurons.

HPC and OFC Synchronize to Support Learning
HPC is a potential source of OFC theta input because the two

structures strongly connect (Barbas and Blatt, 1995), and HPC

has a prominent theta oscillation (Buzsáki, 2002). To examine

whether the two areas interact, we recorded from the OFC

and HPC simultaneously and examined theta activity. Similar

to the OFC, we found prominent theta phase alignment in

HPC LFP (Figure 6A; Figure S11A). We measured the degree

to which the theta phase was synchronous between the two

regions by calculating the cross-area phase alignment value

(PLV; STAR Methods). There was strong theta phase alignment

between the OFC and HPC during the fixation and choice
epochs (Figure 6B). The time course of

HPC-OFC synchrony across the learning cy-

cle (Figure 6C; Figure S11B) closely paral-

leled the evolution of behavior. Specifically,

at the onset of drift, when behavioral perfor-
mance began to drop, there was a significant reduction in

interregional synchrony, particularly during the fixation epoch

(Figure 6D). As subjects began to adjust their behavior to the

changing contingencies, there was an increase in interregional

synchrony that returned to baseline when the contingencies

stabilized.

To determine the direction of information flow between the

OFC and HPC, we examined the relationship between OFC

and HPC theta LFP using generalized partial directed coherence

(GPDC; Figure 6E; STAR Methods). GPDC measures the direc-

tion of influence of one signal on another by computing the

degree to which past values of one can predict the future values

of another. To examinewhether GPDC values differed across the

learning cycle, we performed a 2-way ANOVA with factors of

directional influence (HPC/OFC or OFC/HPC) and learning

(four phases). There was a significant interaction (V: F23032,3 =

280, p < 13 10�15; T: F29944,3 = 670, p < 13 10�15). An analysis

of the simple effects showed that there was more influence be-

tween the two areas during drift and that it was predominately

in the HPC/OFC direction.

This evidence suggests that the HPC provides theta input to

the OFC during learning. Therefore, we hypothesized that theta

stimulation of the HPC would disrupt learning much like stim-

ulation of the OFC. To test this, we stimulated one region while

recording from both. As predicted, HPC closed-loop theta

stimulation resulted in behavioral effects that were identical

to OFC theta stimulation; it severely impaired our subjects’

ability to learn changing values (Figure 7A). To compare the

physiological effects of stimulation on GPDC, we performed

a 2-way ANOVA with factors of directional influence (HPC/

OFC or OFC/HPC) and stimulation site (OFC or HPC). There

was a significant interaction (V: F618,2 = 9.5, p = 0.0001;
Neuron 106, 537–547, May 6, 2020 541
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Figure 5. Theta Phase Locking of OFC Value Encoding

(A) Phase locking of OFC neurons across time and frequency bands. Phase

locking was calculated in symmetric 400-ms windows centered on each time

point and stepped in increments of 50 ms. Pseudocolor denotes mean

resultant vector length (R). Vertical dashed lines indicate the onset of fixation

and picture presentation, respectively.

(B) Percentage of OFC neurons whose firing rate was significantly predicted by

each parameter of the value-centric model. Darker colors indicate neurons

with a positive relationship between value and firing rate, and lighter colors

indicate those with a negative relationship. Many neurons maintained infor-

mation about the current values of the pictures, whereas fewer encoded the

events of the previous trial.

(C) Percentage of variance in neuronal firing rates explained by the

value-centric model as a function of the stage of learning andwhether the firing

rates were aligned to the underlying theta oscillation. Asterisks indicate

significant main effects (2-way ANOVA, F > 1,000, p < 1 3 10�15 for both

subjects).

(D) Mean percent variance explained in firing rate by the value-centric model

during sham stimulation, theta closed-loop stimulation, or beta closed-loop

stimulation. Asterisks indicate significant differences (1-way ANOVA with post

hoc tests, p < 0.005).
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T: F1074,2 = 19, p = 8.7 3 10�9), which, as a simple effects anal-

ysis showed, was because HPC stimulation reduced both

OFC/HPC and HPC/OFC influence, whereas OFC stimula-

tion only reduced OFC/HPC (Figure 7B). These results sug-

gest that it is HPC that provides theta input to the OFC to

enable value learning.
542 Neuron 106, 537–547, May 6, 2020
DISCUSSION

Much of the canonical work of studying the prefrontal cortex

during goal-directed behavior focuses on the computations

underlying the evolution of choice from evaluation of known

options. However, in natural settings, humans and animals

need to flexibly control their decisions in response to changes

in the environment. An extra glass of wine may be fine when

dining with colleagues, but perhaps not when one’s boss is

present. Our findings elucidate the neuronal mechanisms that

underlie this process. Learning involved marked increases in

cross-trial theta phase alignment and theta phase-locking of

value-encoding neurons. We used closed-loop microstimulation

to demonstrate the causal importance of these mechanisms

for choice behavior and showed that OFC theta depends on

HPC input.

Functional Significance of OFC Theta Oscillations
Previous studies that have demonstrated the necessity of OFC

for reward-based learning have relied on relatively coarse ma-

nipulations, such as lesions or inactivations that completely

disrupt all neuronal processing, leaving the precise mechanisms

by which the manipulation alters behavior unclear. Our closed-

loop approach allowed us to disrupt a specific neuronal oscilla-

tion without affecting underlying single-neuron firing rates,

demonstrating the importance of OFC theta for learning. The

OFC connects with cortical areas responsible for processing

all sensory modalities (Carmichael and Price, 1995b), as well

asmost components of the limbic system (Carmichael and Price,

1995a). Phase locking potentially offers one solution by which

the OFC can selectively process information from one structure

relative to another (Canolty et al., 2010). Synchronizing spikes in

both the OFC and HPC to the same theta oscillation increases

the likelihood that HPC neurons can cause spike timing-depen-

dent plasticity in the OFC (Buzsáki et al., 2013). This may be a

general mechanism by which highly interconnected association

cortices are able to prioritize different information sources.

Several recent studies have highlighted the feasibility of this

mechanism. In rats, single neurons in the medial prefrontal

cortex (PFC) have been shown to phase-lock to hippocampal

theta (Jones and Wilson, 2005). Increased theta coherence be-

tween the medial PFC and HPC has also been observed at the

choice point of T mazes during learning (Benchenane et al.,

2010) and can predict working memory performance (Hyman

et al., 2010). In monkeys, theta phase alignment between the

lateral PFC and HPC occurs during learning of sensorimotor as-

sociations (Brincat and Miller, 2015). In humans, coupling be-

tween theta and gamma oscillations has been found to underpin

a variety of cognitive tasks (Canolty et al., 2006). However, these

studies are only correlative. In contrast, our results demonstrate

the causal importance of theta for reward-based learning.

An additional possibility is that the theta response may be

driven by the eye movement to the fixation cue. We think that

this is unlikely for several reasons. First, eye movement artifacts

are quick events lasting about 20 ms and tend to contaminate

the gamma band rather than the theta band (Kovach et al.,

2011). In contrast, changes in theta power in our task last

approximately 400 ms. Furthermore, changes in theta phase
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Figure 6. HPC-OFC Interactions Underlying

Learning

(A) HPC cross-trial theta phase alignment for subject

V. Convention follows Figure 2D.

(B) Mean (± SEM) pairwise HPC-OFC theta phase

synchrony (V: 1049 channel pairs, green; T: 2,528

channel pairs, red), expressed as percent change

from 300 ms before fixation. These data are derived

from the data shown in (C) and Figure S11B.

(C) Left: mean learning from Figure 1D plotted in

green. Right: HPC-OFC theta phase synchrony during

learning (subject V). The pseudocolor scale indicates

the amount of cross-area phase alignment, yellow

dashed vertical lines denote fixation and picture pre-

sentation, and yellow solid horizontal lines segment

the learning cycle into four stages.

(D) Mean HPC-OFC theta phase synchrony during fix-

ation across four stages of the learning cycle, with

average behavior overlaid. These data are derived from

the data shown in (C) and Figure S11B. For both sub-

jects, all comparisons were significant (1-way ANOVA,

p < 0.0001, except for subject T, 1 versus 3, p < 0.05).

(E) Mean directional influence as a function of learning

stage. HPC/OFC influence is shown in blue and

OFC/HPC in pink. Bidirectional influence increased

during drift, and HPC/OFC directional influence was

greater than OFC/HPC (2-way ANOVA with simple

effects; *p < 0.0001 in V, p < 0.05 in T).
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timing occurred when reward contingencies were changing but

not when they were stable (Figure 2E), whereas eye movements

occurred in every trial. Finally, the results from our analysis of

closed-loop stimulation (Figure S7) show that theta phase is a

separate event that has explanatory power above and beyond

the time of the eye movement. A more likely explanation is that

the theta response relates to the neuronal encoding of value

that is a feature of OFC neurons. Similar to many neurophysio-

logical studies of the OFC (Hunt et al., 2018; Padoa-Schioppa,

2013; Rich and Wallis, 2014), the most common neuronal tuning

we observed related to prediction of rewards. However, there is

also a good deal of heterogeneity in response properties,

including different types of value coding (Padoa-Schioppa,

2013) and different properties of reward-predictive cues (Sa-

dacca et al., 2018; Strait et al., 2016; Zhou et al., 2019), with little

evidence for anatomical organization on the basis of neuronal

response properties (Morrison and Salzman, 2009; Rich and

Wallis, 2014). Synchronizing neurons with the same tuning

property to the same oscillation potentially provides a mecha-

nism to co-ordinate the firing of anatomically interspersed

neurons. In support of such a mechanism, our data suggest

that firing of OFC neurons encoding reward predictions preferen-

tially occurs at specific phases of the theta oscillation. Closed-

loop microstimulation disrupts this synchronization and impairs

learning.

An additional question is how a single pulse of microstimula-

tion on a single electrode in the OFC can have such consequen-

tial effects on behavior. It is particularly striking because

permanent lesions of the OFC do not impair a task similar to

the one we used (Rudebeck et al., 2017). However, permanent

lesions of the OFC may allow compensatory changes, either

via downstream homeostatic regulation of neural activity (Otchy
et al., 2015) or in the behavioral strategy the animals adopt to

perform the task. There is also precedent for microstimulation

having dramatic effects. Previous results, using sensory discrim-

ination tasks, have shown that animals can detect the addition of

just a handful of action potentials to a single neuron (Houweling

and Brecht, 2008). Because of recurrent excitation, stimulation

of a single pyramidal neuron can activate around 2% of neigh-

boring pyramidal neurons and about 30% of neighboring inter-

neurons (Kwan and Dan, 2012). These effects can snowball so

that activation of a single pyramidal neuron can be sufficient to

cause switches in global brain state, such as between slow-

wave and rapid eye movement sleep patterns (Li et al., 2009).

Role of OFC in Reward-Based Learning
Modern accounts of reward-based learning differentiate be-

tween two different methods (Daw et al., 2005; Doll et al.,

2012). Model-free RL is associated with habits and skills; it relies

on trial and error, storing or caching the values of past actions,

and inflexibly repeating actions that led to higher values. We

have a relatively developed understanding of the neuronal

instantiation of model-free RL; it depends on dopamine inputs

into the striatum that serve to increase the likelihood of perform-

ing rewarded actions (Dolan and Dayan, 2013; Schultz et al.,

1997). The second RL method is model-based RL, which is

associated with goal-directed actions. It generates predictions

via a computationally expensive process that depends on a

model of the environment, but it is also able to flexibly respond

to environmental changes (Daw et al., 2005). Our understanding

of model-based RL is more limited, in part because it requires

a model of the behavioral task, and it is unclear how such a

model would be implemented at the neuronal level (Behrens

et al., 2018).
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Figure 7. HPC Stimulation Disrupts Value Learning and Bidirectional

OFC-HPC Theta Influence

(A) Trials to learn value during HPC stimulation (*p < 1 3 10�5, rank-sum test).

(B) Percent change (compared with sham stimulation, shown in Figure 6E) in

GPDC during OFC or HPC closed-loop theta stimulation. For both subjects,

OFC stimulation significantly disrupted OFC/HPC influence but not HPC/

OFC, whereas HPC stimulation disrupted influence in both directions.
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Recent work has suggested that the OFCmight play an impor-

tant role in using models that represent the structure of a task

(Schuck et al., 2016; Wilson et al., 2014). This is similar to the

notion of a ‘‘cognitive map,’’ which has long been associated

with the HPC (Doré et al., 1998; Eichenbaum et al., 1999; Howard

et al., 2014; O’Keefe and Nadel, 1978; Wikenheiser and Schoen-

baum, 2016), consisting of a network of associations that spec-

ifies how various components of a task relate to one another.

However, it is unlikely that the OFC is responsible for building

task models because it typically encodes little information about

sensorimotor contingencies (Abe and Lee, 2011; Padoa-

Schioppa and Assad, 2006; Wallis and Miller, 2003). This con-

trasts with the HPC, where neurons encode sensorimotor con-

tingencies in addition to spatial and temporal contexts, precisely

the kind of information that is essential for building task models

(Howard et al., 2014; McKenzie et al., 2014). One possibility is

that both the HPC and OFC make critical contributions to

model-based RL, with HPC responsible for constructing the

cognitive map that instantiates the neuronal representation of

the task model and the OFC responsible for using the cognitive

map to generate reward predictions that can be used to guide

decision-making.

Studies of rodents using sensory preconditioning paradigms

have provided support for this separation of OFC and HPC func-

tions (Wikenheiser and Schoenbaum, 2016). Subjects first learn

an arbitrary association between two sensory cues; i.e., that cue

A predicts the occurrence of cue B. When one of these cues is

subsequently paired with a reward, subjects can use their knowl-

edge of the world (that A and B co-occur) to infer that the other

cue is also likely to lead to a reward. The retrosplenial cortex is

one component of the cortical circuit projecting to the HPC (Ag-

gleton, 2012; Lavenex and Amaral, 2000), and its inactivation

leads to specific deficits in learning the association between sen-

sory cues but leaves conditioning to rewards intact (Robinson

et al., 2014). In contrast, OFC inactivation impairs the ability to

use the A-B association to make inferences about rewards

(Jones et al., 2012). Thus, the HPC may be important for con-

structing associative networks that represent theworld, whereas

the OFC could use those maps to make better reward predic-

tions that can guide choice behavior.
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The interaction of the OFC and HPC therefore reflects the con-

struction of an online representation of value guided by task

structure. Our single-neuron data from the OFC is consistent

with such a representation, with OFC neurons encoding the cur-

rent value of the pictures during the fixation epoch. Our task

design may have encouraged a strategy whereby the animal

explicitly maintained such a representation. The constantly

changing reward contingencies could have discouraged reliance

on long-term storage of stimulus-reward associations, whereas

the small number of pictures could have encouraged the use

of working memory processes to retain the picture values. This

interpretation is consistent with neuroimaging findings in both

humans and monkeys, which have demonstrated the impor-

tance of the OFC and HPC when values are not cued by the

current sensory environment, such as when choice options are

unavailable (Fouragnan et al., 2019) or when estimating the value

of a novel choice (Barron et al., 2013).

We note that although HPC stimulation had similar effects on

learning as OFC stimulation, it does not mean that the impair-

ment reflects the same underlying function. For example, the

cognitive maps constructed of the HPC might be used for a

broad range of cognitive processes, whereas, those of the

OFC it might be used for a more restricted purpose subserving

optimal decision-making. In addition, our HPC stimulation

experiment did not include the same battery of controls as our

OFC stimulation experiments, and so the effects of HPC stimu-

lation may not be mediated via the theta oscillation. Our results

highlight the interaction of the HPC and OFC during reward-

guided behavior as a fruitful avenue for future research.

Conclusions
Dysfunction of both the OFC (Fernando and Robbins, 2011) and

anterior HPC (Small et al., 2011) has been implicated in a large

variety of neuropsychiatric disorders. Many of the symptoms

and causes of neuropsychiatric disease can be understood as

dysfunctional RL processes, an approach that is central to the

nascent field of computational psychiatry (Huys et al., 2016).

A better understanding of the patterns of activity in the OFC

that underlie model-free and model-based RL could lead to

development of treatments based on closed-loop microstimula-

tion, in which microstimulation is only applied when a specific

maladaptive pattern of activity is detected. For example, rodent

models have shown that electrical microstimulation can be

used to reverse the neuronal and behavioral sequelae of addic-

tion (Creed et al., 2015), and optogenetic activation of the OFC

can shift behavior away from habitual behavior toward goal-

directed behavior (Gremel and Costa, 2013), supporting the

notion of using OFC closed-loop microstimulation as a treat-

ment strategy.
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Further information and requests for resources should be directed to the lead contact Eric Knudsen (eric.knudsen@berkeley.edu) and

will be fulfilled on request. This study did not generate any new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were performed in accordance with the National Research Council guidelines and approved by the University of

California at Berkeley Animal Care and Use Committee. Subjects were two male rhesus macaques (Macaca mulatta), aged 6 and

8 years, and weighing 9 and 13 kg at the time of recording (subjects V and T, respectively). Subjects sat head-fixed in a primate chair

and interacted with the task via eye movements measured with infrared eye monitoring equipment (SR Research, Ottawa, Ontario,

CN). Stimulus presentation and behavioral contingencies were controlled using the MonkeyLogic toolbox (Asaad et al., 2013) in the

MATLAB (TheMathworks, Natick, MA) environment. Subjects each had a large unilateral recording chamber situated over the frontal

cortex with access to the temporal lobe.

METHOD DETAILS

Task Design
Subjects performed a value discrimination learning task in which they were required to learn and choose between pairs of probabiliti-

cally-rewarded pictures. A single trial began with the presentation of a small, red fixation cue in the center of the screen which

subjects were required to fixate continuously for 700 ms. After the fixation period, we presented one (forced choice, 20% of trials)

or two (free choice, 80% of trials) reward-predictive pictures. Three pictures were used within a session and they consisted of natural

images sized between 1.5 - 2 degrees of visual angle. Novel pictures were used each day. Subjects could saccade freely between

each available option, and the ultimate choice was made by fixating on the preferred picture for 425 ms. Following choice, a 500 ms

delay preceded either a reward or no reward. There was a 2000 ms intertrial interval. Initially, each picture was associated with a

different probability of reward (Prew), ranging from 0.1 to 0.9. Stable reward contingencies were selected a priori to ensure that

each of the three pictures was discriminable in value, such that one picture rarely earned reward (Prew < 0.3), one was intermediately

rewarded (0.4 < Prew < 0.6), and the last was highly predictive of reward (Prew > 0.7).

We quantified the animal’s performance via a success rate, which was the proportion of trials where they selected the more

valuable picture. This measure was required to exceed a criterion level for at least 35 trials before values began to drift. Based on

training data, we set this criterion at 0.7 for subject V and 0.65 for subject T. Once this criterion was reached, reward probabilities,

Pi;t (the probability of reward delivery for ith picture on trial t), drifted toward new stable points according to a bounded random walk,

such that Pi;t)Pi;t�1 + Nðm;sÞ, where each step, N, is drawn from a normal distribution of mean m and standard deviation s. For all

data here, m = 0.05 and s = 0.01.
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Neurophysiological recording
After initial training, subjects were fitted with head positioners and imaged in a 3TMR scanner. We used these images to generate 3D

reconstructions of each subject’s skull and target brain areas (Fedorov et al., 2012; Gray et al., 2007). Both subjects were implanted

with custom, radiolucent recording chambers fabricated from polyether ether ketone (PEEK). Each recording session, up to 6 multi-

site linear electrodes (16-channel V- or K-probes, Plexon, Dallas, TX) were lowered into OFC and/or the anterior portions of HPC. We

printed custom designed recording grids on an SLA 3D printer (Form 2, Formlabs, Cambridge MA) to ensure that electrode

trajectories targeted the correct brain area (Knudsen et al., 2019). In each region, neurons were sampled randomly rather than

prescreened for selective responses. Neuronal signals were digitized using a Plexon OmniPlex systemwith continuous spike-filtered

signals acquired at 40 kHz and local field-filtered signals acquired at 1 kHz.

Neuronal activity was recorded over the course of 25 sessions prior to the stimulation experiments (V: 16 sessions, T: 9 sessions).

Our OFC recordings were located within areas 11 and 13 of OFC, as determined from gray-white matter transitions (V: 389 contacts,

T: 288). We targeted the CA1 subfield of anterior HPC, since there are strong projections from this region to OFC in the macaque

(Barbas and Blatt, 1995) and it has recently been implicated for its role in value learning in rodents relative to other HPC subfields

(Jeong et al., 2018). We determined that electrodes were positioned in HPC based on three electrophysiological criteria, which

were guided by previous studies of primate hippocampus (Baraduc et al., 2019; Jutras et al., 2013; Skaggs et al., 2007; Wirth

et al., 2003). The three criteria were prominent activity in the theta band, the presence of high-frequency events in the LFP (sharp

waves), and the presence of complex-spiking neurons, whose overall firing rates were generally sparse (1-2 Hz) but had interspike

intervals of < 20 ms (i.e., bursting). For HPC recordings, we sampled from a total of 128 contacts (V: 57 in 7 sessions, T: 71 in 9

sessions). For both OFC and HPC recordings, in order to avoid including spurious results due to volume-conduction within white

matter, we only included electrode channels that either recorded LFP in the presence of spiking neurons, or channels that were

located between channels where we recorded spiking neurons.

Electrical microstimulation
Single platinum iridium electrodes (100 - 300 kU, MicroProbes Inc) were lowered adjacent to at least one multisite probe in the target

brain area. Our closed-loop stimulation setup consisted of a neuronal feature extractor and a stimulation trigger (Figure S5). The

feature extractor performed online filtering and computations of analytic amplitude and phase from Hilbert-transformed LFP signals,

averaged across all recording sites on a given probe. We used a combination of the two signals (analytic power and phase) as the

controller signal: a stimulation trigger was sent for every cycle of phase that power exceeded a heuristically defined threshold. We

observed the dynamic range of the theta power recorded during the first 200 trials of the session. We then set the trigger level for the

closed-loop stimulator at approximately one half of the observed dynamic range. The behavioral task provided the signal to gate the

ongoing stimulation trigger from the feature extractor. The feature extractor and behavioral gate both had to be positive (+5 V) to

provide the final TTL signal to trigger a PlexStim stimulator (Plexon). There was a mean lag of 64 ± 3 ms from threshold crossing until

pulse delivery. We performed pilot experiments to determine the optimum experimental parameters for affecting neural activity and

behavior. We stimulated with biphasic, cathodal-leading, 50 mA constant-current pulses. Each pulse lasted 150 ms and was delivered

at the peak theta phase. We determined these stimulation parameters via piloting in one subject.

For closed-loop sessions targeting theta, each stimulation trigger corresponded to the delivery of a single current pulse. For those

targeting beta, we delivered 3 pulses per trigger at beta frequencies (20 Hz). We adopted this approach due to technical limitations of

our closed-loop system. We were constrained to a polling rate of approximately 16 Hz (1/64 ms), so we compensated for this by

delivering 3 pulses at beta frequencies (20 Hz) for every peak in beta identified, thus approximating the proportion of beta cycles

that would have been decoded given amore optimal closed-loop system. This approachmeant that the stimulation was not as tightly

aligned to the underlying neuronal oscillation compared to our closed-loop theta stimulation, but we wanted to err on the side of

delivering more current than less since this would be a stronger test to rule out non-specific effects of electrical stimulation, such

as general increases in cortical excitability.

For open-loop stimulation, we randomly delayed stimulation by 1 to 300ms from the first triggering of the controller signal on a trial.

The stimulation consisted of 5 pulses delivered at 6 Hz. This ensured that we delivered approximately the same number of stimulation

pulses during the fixation epoch in both the open- and closed-loop conditions, but the stimulation pulses were uncorrelated with the

theta oscillation in the open-loop condition.

Neuronal data preprocessing
Neurons were excluded if their mean firing rate across the course of the session was less than 1 Hz. In addition, to ensure adequate

isolation, we excluded neurons where more than 0.2% of interspike intervals were less than 1500 ms. We performed single neuron

analyses on 566 neurons in subject V, and 275 in subject T. On average, we recorded 33 well isolated OFC neurons per session.

Single neuron activity was transformed into a binary time series at 1 ms resolution, where 1 indicated the presence of a spike,

and 0 the absence. Single unit time series were smoothed by a 50 ms boxcar and aligned to the appearance of the reward-predictive

pictures. LFP signals were filtered using a finite impulse response (FIR) filter of order 1000 using the FFT-based method of

overlap-add (Schafer and Oppenheim, 1989). Signals were notch-filtered at 60 Hz and its harmonics, and then band-pass filtered

at theta (4-8 Hz), beta (12-30 Hz), and gamma (30-60 Hz), based on periodograms obtained by band-pass filtering the signal in over-

lapping windows of 3 Hz. Analytic amplitudes and phases were obtained from Hilbert transforming each pass band.
Neuron 106, 537–547.e1–e4, May 6, 2020 e2



ll
Article
QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral modeling and analyses
We modeled behavior using a simple RL model that derived value estimates of each picture based on its reward history (Sutton and

Barto, 1998). The model updated the estimated value of pictures after the animal received each outcome (reward or no reward). The

learning rule is described by a temporal difference update function:

Qi; t )Qi;t�1 +aðQi;t�1 �Rt�1Þ
where Qi,t is the estimate of the value of picture i on trial t, defined as the last estimate (t - 1) plus a prediction error term scaled by a,

the learning rate parameter, that weights the contribution of each prediction error to learning. These value estimates were then used

to model choice behavior between the currently available pictures < i, j > using the softmax activation function such that:

Pðchoose Qi jQi;QjÞ = ebQi

ebQi + ebQj

where b is a free parameter that determines the discriminability of value estimates. We fit to subject behavior by iterating the model

over a ˛½0:001; 1� and b ˛½1; 100� and finding the set of parameters that best described choice behavior (measured viaR2). The resul-

tant value estimates from the winning model were then used in subsequent analyses of neuronal data.

Stable periods had fixed reward contingencies that did not change from trial to trial. Drift periods were those where reward con-

tingencies slowly changed from one stable period to the next. Stable and drift periods varied in length, partly due to the speed with

which the animal adjusted his behavior to the changing reward contingencies, and partly due to the randomness of the drift process.

To correlate neuronal activity with learning across many sessions, we converted the variable-length stable and drift periods into a

standardized learning cycle. Pre- and post- drift periods were defined as the 25 trials preceding and following a drift period. We

then discretized the drift period into 35 uniformly spaced trial bins, such that each bin contained between 0 and 4 trials depending

on the original length of the drift period (Figure S1). For the OFC-HPC theta synchrony data presented in Figures 6 and S11, we broke

the learning cycle into four windows: (1) pre-drift, the 25 stable trials before contingencies began to drift, (2) early drift, the first 17 trials

of the drift period, (3) late drift, the second 18 trials of the drift period, and (4) post-drift, the 25 stable trials after contingencies

stabilized to their new values.

Measuring information encoded by OFC neurons in the fixation epoch
For each neuron, we calculated the average firing rate, FR, during the 500 ms following onset of fixation. We selected this epoch to

match the period of high theta power in the LFP.We used the RLmodel to determine subjects’ estimates of the value of each the three

pictures on each trial. We tested two alternate models of how neurons might encode value information during fixation. Specifically,

we examined whether values were maintained in a ‘value-centric’ space or a ‘picture-centric’ space. In the value-centric model, we

examined whether neurons were encoding the three value estimates, such that on a given trial, t, there were three values: Qlow was

the lowest value picture, Qmiddle was the middle value picture and Qhigh was the highest value picture. In addition, we included

parameters that could capture whether neuronal activity encoded events that had happened on the previous trial: It-1was the identity

of the chosen picture on the previous trial,Qt-1was the value of the previously chosen picture, and Rt-1was whether it was rewarded.

Trial number, t, was included as a nuisance parameter to account for non-specific changes in firing rate across the course of the

session. The full regression model was:

FR = b0 + b1Qlow + b2Qmiddle +b3Qhigh +b4It�1 +b5Qt�1 +b6Rt�1 +b7t

The picture-centric model examined whether neurons encoded the value of specific pictures, such that on trial, t, there were three

values associated with the three pictures, Q1.Q3. The full regression model was:

FR = b0 + b1Q1 + b2Q2 +b3Q3 +b4It�1 +b5Qt�1 +b6Rt�1 +b7t

Analysis of phase alignment, phase synchrony, and directed coherence
To measure cross-trial phase alignment and interregional phase synchrony, we extracted phase information from bandpass-filtered

signals using the angle of the Hilbert transform. The strength of phase alignment was determined by calculating the mean resultant

vector length, R; across trials, which describes the degree to which a phase is conserved across trials such that for the phase 4 at

time point t at frequency f:

R =
1

#trials

��� X# trials

trial =1

expði4trialðf ; tÞÞ
���

This analysis was performed separately for each electrode. Average phase alignment, as in Figures 2D and 6A (and Figures S4B and

S11A) was calculated across all trials. For learning analyses, we used the standardized learning cycle bins described above to

observe how the phase alignment changed across learning using a sliding average of 16 trial bins stepped across each 85 trial
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bin learning cycle. This same analysis was applied to firing rates to investigate the relationship between theta phase and single

neuron firing. For each neuron, we calculated the phases at which spikes occurred, during 400 ms bins (50 ms increments) across

the length of the trial. In each bin, we calculated R of the phase distributions.

To measure the strength of interregional synchrony, we calculated a cross-area phase-alignment value, PLV (Brincat and Miller,

2015; Lachaux et al., 1999). PLV is computed similarly to R above, except the exponent term becomes the difference between phase

from two electrodes:

R =
1

#trials

��� X# trials

trial = 1

exp
�
i4trialðf ; tÞ

�
4trial;trode iðf ; tÞ � 4trial;trode jðf ; tÞ

�� ���
PLV measures the degree to which the LFP recorded on distinct pairs of electrodes is aligned across trials, independent of signal

power or absolute phase. This analysis was carried out for all OFC-HPC pairs (1049 subject V, 2528 subject T). For display purposes

only (Figure 6C; Figure S11B), PLV pseudocolor plots were smoothed with a two-dimensional boxcar (3 trials, 100 ms).

To test the influences between OFC and HPC channels, we computed the generalized partial directed coherence (GPDC) between

pairs of channels in the two regions (Baccala et al., 2007). This measures the interaction between channels after factoring out autor-

egressive effects. Pairs of LFP time series were fit to a multivariate autoregressive (MVAR) model:

xðtÞ =
Xp
k =1

Akxðt� kÞ+wðtÞ

where x(t) is the LFP time series data vector at time t, Ak is the autoregressive coefficient describing the interactions between the two

series at the kth time lag, p is themaximum lag, andw(t) is the residual error from themodel fit. We systematically varied the number of

lags used to fit the MVAR model for pairs of HPC and OFC channels, then determined the maximum lag, p, that best described the

data byminimizing the least-squares error. This corresponded to�100ms, similar to previouswork (Brincat andMiller, 2015).Models

were fit separately with a 500 ms time window stepped in 100 ms increments across the trial. For analysis of stimulation effects

(Figure 7B) model coefficients were calculated from no stimulation and stimulation trials separately. Once computed, model param-

eters were then transformed into the frequency domain asAij for the i
th OFC channel and the jthHPC channel (or vice versa) such that:

AijðfÞ = dij �
Xp
k =1

aijðkÞe�j2pfk

where f is frequency, and dij = 1 when i = j and 0 otherwise. GPDC, p, for HPC-OFC LFP pair i and j at frequency f was calculated as:

pijðfÞ =
1
si
AijðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k = 1

1
s2
k

AkjðfÞAT
kjðfÞ

s

where T is the transpose operation and where scaling by s, the standard deviation of the residual error from the model fit, serves to

mitigate bias introduced by variation in signal amplitude (the generalized part of GPDC). GPDC was computed using-theta filtered

LFP data averaged from 4-8 Hz.

Statistics
All statistical tests are described in the corresponding figure legends or the main text. Error bars indicate standard error of the mean

unless otherwise specified. All comparisons were two-sided. Post hoc comparisons used Tukey’s Honestly Significant Difference

test unless otherwise stated.

DATA AND CODE AVAILABILITY

The datasets and code supporting the current study are available from the lead contact on request.
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Supplementary Figure 1. Related to Figure 1. Calculating the learning cycle.  

Method to calculate the standardized learning cycle for a single session from subject V. A) One 

picture value (top) and subject’s success rates (bottom) across six successive learning cycles 

from this session. The duration of each learning cycle differs by around 20 trials. The beginning 

(dashed vertical lines) and end of each drift period are indicated with red circles. B) Drift values 

were binned into 35 bins bracketed by 25 pre- and post-drift trials. Each learning cycle is now the 

same length. C) Mean (± s.e.m.) success rate for the same session across the six standardized 

learning cycles. Vertical dashed gray lines indicate onset and offset of the learning cycle. 

Horizontal dashed green line indicates criterion performance.  
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Supplementary Figure 2. Related to STAR Methods, Neurophysiological recording. 
Recording locations.  

Subjects were scanned in a 3T MRI scanner to generate 3D models of the skull and determine 

trajectories to reach target brain areas. For each subject, we plotted these renders in isometric 

(left), sagittal (middle), and coronal (right) views. Both subjects were implanted with unilateral (V: 

left hemisphere, T: right hemisphere) polyether ether ketone (PEEK) recording chambers for 

acute neurophysiology. Colored lines on 3D models denote electrode trajectories used to target 

OFC and HPC. Red lines on MRI scans indicate final placement of multisite recording probes. 
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Yellow dots indicate locations of stimulation electrodes. A = anterior, P = posterior, L = left, R = 

right. 

 

Supplementary Figure 3. Related to Figure 2. Example LFP traces. 

A) Example raw LFP traces from OFC and HPC. Black traces show notch-filtered LFP, colored 

traces show theta-filtered oscillations. Vertical gray dashed lines correspond to the onsets of 
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fixation and options, respectively. Scale bar denotes 100 mV. B) Example LFP traces recorded 

on closed-loop stimulation trials. Black traces show notch-filtered LFP pink traces show theta-

filtered oscillations. The dashed vertical lines correspond to the onsets of fixation and options, 

respectively. Scale bar denotes 150 mV. The stimulation pulse often causes a broadband 

increase in power, but the stimulation artifact is filtered out from the theta band. 
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Supplementary Figure 4. Related to Figure 2. Additional OFC LFP analyses.  

A) Mean percent change in broadband OFC LFP power during the fixation epoch relative to 

intertrial interval power. Yellow dashed box indicates the 4-8 Hz frequency band. B) Cross-trial 

phase alignment in theta (4 - 8 Hz), beta (13 - 30 Hz), and gamma (30 - 60 Hz) bands in subject 

T. Convention follows Figure 2D. C) Proportion of OFC channels where the cross-trial theta phase 

alignment was modulated by learning, defined as a significant difference in phase alignment 

between stable and drift trials within the first 400 ms of each epoch (paired t-test evaluated at p < 
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0.01). Many channels showed a significant effect of learning on theta, particularly during fixation. 

D) Mean (± s.e.m.) theta power over the course of the trial.  Vertical dashed lines indicate the 

fixation and options onset, respectively. E) Percent change in cross-trial phase alignment mid-

drift (averaged over the middle third of the drift period) compared to trials with stable 

contingencies. Gray shaded regions denote three standard deviations of the shuffled percent 

change over 25 bootstraps at each time point. Vertical dashed lines indicate fixation onset, options 

onset, and 500 ms after options onset which lies within the hold period of the median choice. The 

change in the amount of cross-trial phase alignment with learning was strongest and most 

consistent across subjects during the fixation epoch. F) Change in theta power across the learning 

cycle. Convention follows Figure 2E. Error bars at right correspond to ± 1 s.e.m. of bootstrapped 

distributions. There was no effect of learning on theta power. 
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Supplementary Figure 5. Related to STAR Methods, Electrical microstimulation. 
Schematic of the closed-loop stimulation method.  

A) We extracted LFP activity from a 16-channel probe in real time and computed instantaneous 

power and phase using the Hilbert transform. We then thresholded mean power in the frequency 

band of interest at approximately the midpoint of the dynamic range (gray dashed line). Each 

cycle of phase that power remained above threshold generated a single pulse triggered on the 

peak of the Hilbert transform (right, top panel; “Feature extractor”). The Hilbert transform varies 

from -180° at the trough of the theta oscillation to +180° at the trough of the next wave in the 

oscillation. Because of the lag in our system (64 ± 3 ms, or approximately half a theta cycle) this 
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ensured that our stimulation was delivered close to the peak of the theta oscillation. This signal 

was integrated with the “Behavioral event gate” signal to ensure that stimulation pulses only 

occurred during the behavioral epoch of interest. B) Histograms and polar plots showing the 

distribution of stimulation pulses as a function of theta phase in both closed-loop and open-loop 

conditions. For clarity, two full cycles of theta are illustrated. Stimulation pulses in the closed-loop 

condition cluster around the peaks of the theta oscillation, whereas they are uniformly distributed 

in the open-loop condition. C) Distribution of the time of stimulation pulses in the closed-loop and 

open-loop (bottom) conditions. Because the behavioral event gate was triggered by the 

presentation of the fixation cue, a small proportion of the stimulation pulses occurred before the 

animal had acquired fixation (15% subject V, 12% subject T). However, there was no difference 

in the time to acquire fixation on trials where stimulation pulses occurred prior to acquisition of 

fixation compared to those where they did not (permutation test, 10000 iterations, time to acquire 

fixation when first pulse occurred prior to fixation onset vs. after fixation onset; V: 267 ± 25 ms vs. 

278 ± 11 ms, p > 0.1; T: 367 ± 47 ms vs. 346 ± 18 ms,  p > 0.1). 
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Supplementary Figure 6. Related to Figure 4. Effects of stimulation on LFP.   

A) Mean number of stimulation pulses delivered per trial for all experimental conditions for both 

subjects. B) Effects of theta and beta fixation epoch stimulation on cross-trial theta phase 

alignment for subject T. Convention follows Figure 4A. Theta stimulation disrupted theta phase 

alignment, whereas beta stimulation had no effect. C) The effect of delivering pulses on the mean 

(± s.e.m.) LFP amplitude at different phases of the theta oscillation. The different lines illustrate 

different time intervals following the stimulation pulse. Note that the shaded error interval is too 

small to display. 
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Supplementary Figure 7. Related to Figure 4. Effects of open-loop stimulation on 
behavior.   

A) The difference in choice performance following stimulation pulses on the positive phase of 

theta relative to the negative phase. A 2-way ANOVA with factors of Valence and Pulse Number 

showed a significant interaction in Subject V (F52408,3 = 11.6, p = 1.2 x 10-7), which a simple effects 

analysis revealed was due to a particularly disruptive effect on choice behavior when either the 

first or second pulse was delivered during the positive phase of theta (first pulse: p < 1 x 10-8, 

second pulse: p = 0.02, all others p > 0.05). In subject T there was a significant main effect of 

Valence (F70414,1 = 17, p = 3 x 10-5), but the interaction was not significant (F70414,3 = 0.6, p = 0.6). 

B) Mean choice performance as a function of the phase of stimulation of the first stimulation pulse. 

Data centered on the zero crossing of the oscillation were excluded from the analysis (gray 

datapoints). In both subjects, stimulation delivered on the positive phase of theta (blue datapoints) 

significantly disrupted choice behavior compared to stimulation delivered on the negative phase 

(red datapoints). Because of the strong cross-trial phase alignment of the theta oscillation to 
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fixation onset, we ensured that these effects were driven by theta phase per se and not solely by 

the timing of the stimulation pulse relative to fixation onset. We compared two logistic models to 

predict the optimality of behavioral choice: a full model containing the pulse time and the sine and 

cosine components of theta phase at the time of the pulse, and a reduced model containing only 

the time parameter. Pulse timing alone significantly predicted choice behavior in both subjects (V: 

normalized βtime = -0.09, p = 3 x 10-7, d.f. = 13822; T: βtime = -0.12, p = 2 x 10-8, d.f. = 7982). However, 

at least one phase component in each subject (sine θ in V, cosine θ in T) significantly predicted 

behavioral choice in the full model (V: βsinθ = 0.063, p = 0.001; T: βcosθ = 0.058, p = 0.005). In both 

subjects, the fit of data was better explained in the full model relative to the reduced model (via 

Wilks’ theorem; V: χ2 = 14, p = 0.001; T: χ2 = 8.7, p = 0.01).  
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Supplementary Figure 8. Related to Figure 5. Reinforcement learning (RL) modeling.  

Two example sessions showing RL fits for subjects V (left) and T (right). The top plot shows each 

subject’s success rate across the session (black trace; 20 trial sliding average) and the best fit of 

the data described by the model (colored traces). The bottom plots show the objective (black) and 

model-derived picture values (colored). Across all sessions, the inverse temperature (β) 

parameter, which measures how sensitive choices are to approximate values, was 3.4 ± 0.3 for 

subject V and 3.4 ± 0.2 for T. The learning rate (α), which determines how much value is updated 

following an outcome, was 0.09 ± 0.01 for subject V and 0.08 ± 0.05 for T. 
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Supplementary Figure 9. Related to Figure 5. Single neuron examples of value 
encoding. 

A) Three example OFC neurons whose firing rates significantly correlated with the phase of theta. 

Z indicates the results of Rayleigh’s Z-test that tests whether a circular distribution is non-uniform. 

B) Distribution of phase locking of the OFC population. Neurons whose spikes were significantly 

locked to theta are shown in purple. Most neurons fired preferentially during the rising phase of 

the theta oscillation. C) Spike density histograms of three value neurons that are phase-locked to 

theta: dark to light shading denotes low to high value. Each histogram is synchronized to specific 

theta cycles, where θ0 is the first theta cycle immediately following fixation onset. The theta cycle 

with peak value encoding is denoted by an asterisk. 
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Supplementary Figure 10. Related to Figure 5. Effects of stimulation on single neuron 
firing rates. 

Mean firing rate of neurons in a 100 ms window immediately before a stimulation pulse (dark 

colors) and a 100 ms window after a stimulation pulse (light colors). There was no effect of 

stimulation on neuronal firing rates.  
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Supplementary Figure 11. Related to Figure 6. HPC-OFC interactions, subject T.  

A) Mean (± s.e.m.) cross-trial theta phase alignment across all electrodes in HPC from subject T 

(N=288). Convention follows Figure 2D. B) HPC-OFC theta phase synchrony for all pairwise 

combinations (N=2528) in subject T. Convention follows Figure 6C. Data is the source of the bars 

in Figure 6D. Like subject V, the decrease in success rate disrupts HPC-OFC synchrony, but as 

performance stabilizes, synchrony exceeds pre-learning levels.  
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