欢迎光临托普仕留学!

视频精选 网站导航
托普仕留学

专注美国前30院校
规划与申请

400 - 686 - 9991

官方客服

托普仕留学 当前位置: 托普仕留学 > 美国留学资讯 > 正文
麻省理工学院新成果:可翻跟斗的机器人
上传时间: 2019-11-04 13:47:48           浏览量: 1390

  麻省理工学院素以顶尖的工程学和计算机科学而著名,该校的人工智能实验室研制出了很多可以改变人类生活的项目。今日麻省理工学院又有了新成果,可以翻跟斗并且还能自行组装。

  麻省理工学院的计算机科学和人工智能实验室为其小型立方体机器人提出了一种巧妙的方法,这些机器人可以自行移动,相互交流和协调以进行自组装。麻省理工学院的研究人员将这种行为描述为某种“蜂巢状”。

  用于解决机器人控制问题的基于学习的方法最近有了显著的发展,这是由模拟基准(如dm_control或OpenAI-Gym)的广泛可用和灵活的、可扩展的强化学习技术(如DDPG, QT-Opt, 或 Soft Actor-Critic)的改进推动的。

  虽然通过模拟学习很有效,但由于物理现象建模不准确或系统延迟等因素,这些模拟环境在部署到真实机器人时经常遇到困难。这激发了在真实世界中,在真实的物理硬件上直接开发机器人控制解决方案的需求。

  当前,在物理硬件上的大多数机器人研究都是在高成本、工业级质量的机器人(PR2、Kuka-arms、ShadowHand、Baxter等)上进行的,目的是在受控环境中进行精确的、受监控的操作。此外,这些机器人是围绕传统的控制方法设计的,这些控制方法注重精度、可重复性和易于表征。

  这与基于学习的方法形成了鲜明对比,基于学习的方法对于不完善的传感和和驱动具有鲁棒性,并且要求(a)高度的适应性以允许在现实世界中的反复试验学习,(b)低成本且实现维护,以通过复制实现可扩展性,以及(c)可靠的重置机制以减轻严格的人工监控要求。

  来自麻省理工学院和谷歌大脑的研究人员解决了这个问题,他们提出了一个开源的低成本机器人学习平台“ROBEL”(Robotics Benchmarks for Learning with Low-Cost Robots),旨在鼓励快速实验和硬件强化学习。ROBEL还提供了主要用于促进现实世界物理硬件研究和开发的基准任务。ROBEL是一个快速的实验平台,支持广泛的实验需求和开发新的强化学习和控制方法。

  ROBEL由D’Claw和D'Kitty组成,D'Claw是一个有三只手臂的机械臂型机器人,可以帮助学习灵巧的操作任务.

麻省理工学院新成果:可翻跟斗的机器人.png

  D'Claw

  D'Kitty是一个有四条腿的机器人,可以帮助学习灵活的腿部运动任务。

麻省理工学院新成果:可翻跟斗的机器人.png

  D'Kitty

  这个机器人平台是低成本的,模块化的,易于维护,足够强大,能够支持从零开始的硬件强化学习。

麻省理工学院新成果:可翻跟斗的机器人.png

  左:十二自由度D'Kitty;中:9 自由度D'Claw;右:功能齐全的 D'Claw 装置D’Lantern。

  为了使机器人成本便宜和易于构建,研究人员基于现成的组件和常见的原型工具(3D打印或激光切割)设计了ROBEL。该设计很容易组装,只需要几个小时即可构建。

  ROBEL基准

  谷歌设计了一套对 D’Claw and D’Kitty两个平台都适用的任务,可用于对现实世界的机器人学习进行基准测试。

  ROBEL的任务定义包括密集和稀疏任务目标,并在任务定义中引入硬件安全指标,例如,指示关节是否超过“安全”操作界限或作用力阈值。ROBEL还为所有任务提供模拟器,以促进算法开发和快速原型设计。D’Claw 任务主要围绕三种常见的操作行为展开:摆形(Pose)、旋转(Turn)和拧(Screw)。

麻省理工学院新成果:可翻跟斗的机器人.png

  左: Pose-摆出符合环境的形态。中:Turn-将物体旋转到指定的角度。

  D’Kitty的任务主要围绕三种常见的移动行为——站立、定向和行走。

麻省理工学院新成果:可翻跟斗的机器人.png

  左:站立-直立。右:走-移动到目标点。

  针对这些基准任务,研究人员评估了几种深度强化学习方法(on-policy, off policy, demo-accelerated, supervised),评估结果和最终策略被作为baseline包含在软件包中以供比较。具体的任务细节和基线性能请查看论文。

  可重复性和稳健性

  ROBEL平台具有强大的功能,可以支持直接的硬件训练,迄今已积累了超过14000个小时的实际经验。一年来,这些平台已经非常成熟。由于设计的模块化,对系统的维护变得非常简单,几乎不需要领域内的专业知识。

  为了确保平台和基准方法的可重复性,两个不同的研究实验室分别对ROBEL进行了研究。本研究仅使用软件分发和文档。不允许亲自访问。利用ROBEL的设计文档和组装说明,二者都可以复制两个硬件平台。基准任务在两个实验室分别构建的机器人上进行训练。

  下图所示在两个不同地点打造的两个D'Claw机器人,它们不仅训练进度相似,而且最终收敛到了相同的性能,说明ROBEL基准具备良好的可重复性。

4.png

  在不同实验室开发的两个真实D'Claw机器人执行任务的训练性能

  实验结果与性能展示

  到目前为止,ROBEL在各种强化学习研究中都非常有用。下面我们重点介绍一些关键结果, D’Claw平台是完全自主的,可以在很长一段时间内维持实验的可靠性,而且可以使用刚性和柔性对象的各种强化学习范例和任务改进实验。

e850c436bf788bcdb8cb6352b0ef49577313.gif


  上图:高灵活性目标:使用DAPG进行的硬件训练有效学习了如何对灵活目标进行旋转。实验中可以观察到机器人对刚性更高的阀门中心部分进行操纵。D'Claw对硬件训练的稳健性很高,这有助于在难于模拟的任务上获得成功。

  重要的是,D'Claw平台是高度模块化的,而且具备高度可重复性,便于进行扩展实验。通过扩展设置,我们发现多个D'Claws可以通过共享经验更快地对任务进行集体学习。

  通过共享SAC的分布式版本的硬件训练流程,可以面向多个目标任务实现任意角度的结合。在多任务定制中,完成五个任务只需要单个任务经验的2倍即可。在视频中,五只D'Claws机器人将不同的物体旋转180度(这是出于视觉呈现的考虑,实际策略可以实现任意角度的旋转)

  总之,ROBEL平台成本低、性能强大、可靠性高,可以满足新兴的基于学习范式的需求,这些范式需要高度的可扩展性和弹性。我们已经将ROBEL发布到开源社区中,相信可以推动相关研究和实验的多样性的提升。

  以上就是托普仕带来的麻省理工学院新成果介绍,想要了解更多留学资讯,敬请关注托普仕留学官网,资深顾问在线答疑,帮助力你的名校梦。

托普仕留学